Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 64, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229087

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease whose pathophysiology involves the interplay between genetic and environmental factors, ultimately leading to dysfunction of the epidermis. While several treatments are effective in symptom management, many existing therapies offer only temporary relief and often come with side effects. For this reason, the formulation of an effective therapeutic plan is challenging and there is a need for more effective and targeted treatments that address the root causes of the condition. Here, we hypothesise that modelling the complexity of the molecular buildup of the atopic dermatitis can be a concrete means to drive drug discovery. METHODS: We preprocessed, harmonised and integrated publicly available transcriptomics datasets of lesional and non-lesional skin from AD patients. We inferred co-expression network models of both AD lesional and non-lesional skin and exploited their interactional properties by integrating them with a priori knowledge in order to extrapolate a robust AD disease module. Pharmacophore-based virtual screening was then utilised to build a tailored library of compounds potentially active for AD. RESULTS: In this study, we identified a core disease module for AD, pinpointing known and unknown molecular determinants underlying the skin lesions. We identified skin- and immune-cell type signatures expressed by the disease module, and characterised the impaired cellular functions underlying the complex phenotype of atopic dermatitis. Therefore, by investigating the connectivity of genes belonging to the AD module, we prioritised novel putative biomarkers of the disease. Finally, we defined a tailored compound library by characterising the therapeutic potential of drugs targeting genes within the disease module to facilitate and tailor future drug discovery efforts towards novel pharmacological strategies for AD. CONCLUSIONS: Overall, our study reveals a core disease module providing unprecedented information about genetic, transcriptional and pharmacological relationships that foster drug discovery in atopic dermatitis.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Pele , Perfilação da Expressão Gênica , Fenótipo , Biomarcadores
2.
Front Toxicol ; 5: 1294780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026842

RESUMO

Assessing chemical safety is essential to evaluate the potential risks of chemical exposure to human health and the environment. Traditional methods relying on animal testing are being replaced by 3R (reduction, refinement, and replacement) principle-based alternatives, mainly depending on in vitro test methods and the Adverse Outcome Pathway framework. However, these approaches often focus on the properties of the compound, missing the broader chemical-biological interaction perspective. Currently, the lack of comprehensive molecular characterization of the in vitro test system results in limited real-world representation and contextualization of the toxicological effect under study. Leveraging omics data strengthens the understanding of the responses of different biological systems, emphasizing holistic chemical-biological interactions when developing in vitro methods. Here, we discuss the relevance of meticulous test system characterization on two safety assessment relevant scenarios and how omics-based, data-driven approaches can improve the future generation of alternative methods.

3.
Bioinformatics ; 39(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471593

RESUMO

MOTIVATION: De novo drug development is a long and expensive process that poses significant challenges from the design to the preclinical testing, making the introduction into the market slow and difficult. This limitation paved the way to the development of drug repurposing, which consists in the re-usage of already approved drugs, developed for other therapeutic indications. Although several efforts have been carried out in the last decade in order to achieve clinically relevant drug repurposing predictions, the amount of repurposed drugs that have been employed in actual pharmacological therapies is still limited. On one hand, mechanistic approaches, including profile-based and network-based methods, exploit the wealth of data about drug sensitivity and perturbational profiles as well as disease transcriptomics profiles. On the other hand, chemocentric approaches, including structure-based methods, take into consideration the intrinsic structural properties of the drugs and their molecular targets. The poor integration between mechanistic and chemocentric approaches is one of the main limiting factors behind the poor translatability of drug repurposing predictions into the clinics. RESULTS: In this work, we introduce DREAM, an R package aimed to integrate mechanistic and chemocentric approaches in a unified computational workflow. DREAM is devoted to the druggability evaluation of pathological conditions of interest, leveraging robust drug repurposing predictions. In addition, the user can derive optimized sets of drugs putatively suitable for combination therapy. In order to show the functionalities of the DREAM package, we report a case study on atopic dermatitis. AVAILABILITY AND IMPLEMENTATION: DREAM is freely available at https://github.com/fhaive/dream. The docker image of DREAM is available at: https://hub.docker.com/r/fhaive/dream.


Assuntos
Reposicionamento de Medicamentos , Transcriptoma , Humanos , Reposicionamento de Medicamentos/métodos
4.
Sci Data ; 10(1): 409, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355733

RESUMO

Adverse outcome pathways (AOPs) are emerging as a central framework in modern toxicology and other fields in biomedicine. They serve as an extension of pathway-based concepts by depicting biological mechanisms as causally linked sequences of key events (KEs) from a molecular initiating event (MIE) to an adverse outcome. AOPs guide the use and development of new approach methodologies (NAMs) aimed at reducing animal experimentation. While AOPs model the systemic mechanisms at various levels of biological organisation, toxicogenomics provides the means to study the molecular mechanisms of chemical exposures. Systematic integration of these two concepts would improve the application of AOP-based knowledge while also supporting the interpretation of complex omics data. Hence, we established this link through rigorous curation of molecular annotations for the KEs of human relevant AOPs. We further expanded and consolidated the annotations of the biological context of KEs. These curated annotations pave the way to embed AOPs in molecular data interpretation, facilitating the emergence of new knowledge in biomedicine.


Assuntos
Rotas de Resultados Adversos , Humanos , Bases de Conhecimento , Toxicogenética
5.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37225400

RESUMO

MOTIVATION: Transcriptomic data can be used to describe the mechanism of action (MOA) of a chemical compound. However, omics data tend to be complex and prone to noise, making the comparison of different datasets challenging. Often, transcriptomic profiles are compared at the level of individual gene expression values, or sets of differentially expressed genes. Such approaches can suffer from underlying technical and biological variance, such as the biological system exposed on or the machine/method used to measure gene expression data, technical errors and further neglect the relationships between the genes. We propose a network mapping approach for knowledge-driven comparison of transcriptomic profiles (KNeMAP), which combines genes into similarity groups based on multiple levels of prior information, hence adding a higher-level view onto the individual gene view. When comparing KNeMAP with fold change (expression) based and deregulated gene set-based methods, KNeMAP was able to group compounds with higher accuracy with respect to prior information as well as is less prone to noise corrupted data. RESULT: We applied KNeMAP to analyze the Connectivity Map dataset, where the gene expression changes of three cell lines were analyzed after treatment with 676 drugs as well as the Fortino et al. dataset where two cell lines with 31 nanomaterials were analyzed. Although the expression profiles across the biological systems are highly different, KNeMAP was able to identify sets of compounds that induce similar molecular responses when exposed on the same biological system. AVAILABILITY AND IMPLEMENTATION: Relevant data and the KNeMAP function is available at: https://github.com/fhaive/KNeMAP and 10.5281/zenodo.7334711.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma
6.
Adv Sci (Weinh) ; 10(2): e2203984, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36479815

RESUMO

Mechanistic toxicology provides a powerful approach to inform on the safety of chemicals and the development of safe-by-design compounds. Although toxicogenomics supports mechanistic evaluation of chemical exposures, its implementation into the regulatory framework is hindered by uncertainties in the analysis and interpretation of such data. The use of mechanistic evidence through the adverse outcome pathway (AOP) concept is promoted for the development of new approach methodologies (NAMs) that can reduce animal experimentation. However, to unleash the full potential of AOPs and build confidence into toxicogenomics, robust associations between AOPs and patterns of molecular alteration need to be established. Systematic curation of molecular events to AOPs will create the much-needed link between toxicogenomics and systemic mechanisms depicted by the AOPs. This, in turn, will introduce novel ways of benefitting from the AOPs, including predictive models and targeted assays, while also reducing the need for multiple testing strategies. Hence, a multi-step strategy to annotate AOPs is developed, and the resulting associations are applied to successfully highlight relevant adverse outcomes for chemical exposures with strong in vitro and in vivo convergence, supporting chemical grouping and other data-driven approaches. Finally, a panel of AOP-derived in vitro biomarkers for pulmonary fibrosis (PF) is identified and experimentally validated.


Assuntos
Rotas de Resultados Adversos , Segurança Química , Animais , Medição de Risco/métodos , Toxicogenética
7.
Hum Genomics ; 16(1): 62, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36437479

RESUMO

In recent years, a growing interest in the characterization of the molecular basis of psoriasis has been observed. However, despite the availability of a large amount of molecular data, many pathogenic mechanisms of psoriasis are still poorly understood. In this study, we performed an integrated analysis of 23 public transcriptomic datasets encompassing both lesional and uninvolved skin samples from psoriasis patients. We defined comprehensive gene co-expression network models of psoriatic lesions and uninvolved skin. Moreover, we curated and exploited a wide range of functional information from multiple public sources in order to systematically annotate the inferred networks. The integrated analysis of transcriptomics data and co-expression networks highlighted genes that are frequently dysregulated and show aberrant patterns of connectivity in the psoriatic lesion compared with the unaffected skin. Our approach allowed us to also identify plausible, previously unknown, actors in the expression of the psoriasis phenotype. Finally, we characterized communities of co-expressed genes associated with relevant molecular functions and expression signatures of specific immune cell types associated with the psoriasis lesion. Overall, integrating experimental driven results with curated functional information from public repositories represents an efficient approach to empower knowledge generation about psoriasis and may be applicable to other complex diseases.


Assuntos
Psoríase , Humanos , Psoríase/genética , Pele/metabolismo , Redes Reguladoras de Genes/genética , Transcriptoma/genética
8.
Comput Struct Biotechnol J ; 20: 4837-4849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147662

RESUMO

Big Data pervades nearly all areas of life sciences, yet the analysis of large integrated data sets remains a major challenge. Moreover, the field of life sciences is highly fragmented and, consequently, so is its data, knowledge, and standards. This, in turn, makes integrated data analysis and knowledge gathering across sub-fields a demanding task. At the same time, the integration of various research angles and data types is crucial for modelling the complexity of organisms and biological processes in a holistic manner. This is especially valid in the context of drug development and chemical safety assessment where computational methods can provide solutions for the urgent need of fast, effective, and sustainable approaches. At the same time, such computational methods require the development of methodologies suitable for an integrated and data centred Big Data view. Here we discuss Knowledge Graphs (KG) as a solution to a data centred analysis approach for drug and chemical development and safety assessment. KGs are knowledge bases, data analysis engines, and knowledge discovery systems all in one, allowing them to be used from simple data retrieval, over meta-analysis to complex predictive and knowledge discovery systems. Therefore, KGs have immense potential to advance the data centred approach, the re-usability, and informativity of data. Furthermore, they can improve the power of analysis, and the complexity of modelled processes, all while providing knowledge in a natively human understandable network data model.

9.
Cancers (Basel) ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454948

RESUMO

Despite remarkable efforts of computational and predictive pharmacology to improve therapeutic strategies for complex diseases, only in a few cases have the predictions been eventually employed in the clinics. One of the reasons behind this drawback is that current predictive approaches are based only on the integration of molecular perturbation of a certain disease with drug sensitivity signatures, neglecting intrinsic properties of the drugs. Here we integrate mechanistic and chemocentric approaches to drug repositioning by developing an innovative network pharmacology strategy. We developed a multilayer network-based computational framework integrating perturbational signatures of the disease as well as intrinsic characteristics of the drugs, such as their mechanism of action and chemical structure. We present five case studies carried out on public data from The Cancer Genome Atlas, including invasive breast cancer, colon adenocarcinoma, lung squamous cell carcinoma, hepatocellular carcinoma and prostate adenocarcinoma. Our results highlight paclitaxel as a suitable drug for combination therapy for many of the considered cancer types. In addition, several non-cancer-related genes representing unusual drug targets were identified as potential candidates for pharmacological treatment of cancer.

10.
Comput Struct Biotechnol J ; 20: 1413-1426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386103

RESUMO

The recent advancements in toxicogenomics have led to the availability of large omics data sets, representing the starting point for studying the exposure mechanism of action and identifying candidate biomarkers for toxicity prediction. The current lack of standard methods in data generation and analysis hampers the full exploitation of toxicogenomics-based evidence in regulatory risk assessment. Moreover, the pipelines for the preprocessing and downstream analyses of toxicogenomic data sets can be quite challenging to implement. During the years, we have developed a number of software packages to address specific questions related to multiple steps of toxicogenomics data analysis and modelling. In this review we present the Nextcast software collection and discuss how its individual tools can be combined into efficient pipelines to answer specific biological questions. Nextcast components are of great support to the scientific community for analysing and interpreting large data sets for the toxicity evaluation of compounds in an unbiased, straightforward, and reliable manner. The Nextcast software suite is available at: ( https://github.com/fhaive/nextcast).

11.
Methods Mol Biol ; 2401: 121-146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34902126

RESUMO

The amount of data made available by microarrays gives researchers the opportunity to delve into the complexity of biological systems. However, the noisy and extremely high-dimensional nature of this kind of data poses significant challenges. Microarrays allow for the parallel measurement of thousands of molecular objects spanning different layers of interactions. In order to be able to discover hidden patterns, the most disparate analytical techniques have been proposed. Here, we describe the basic methodologies to approach the analysis of microarray datasets that focus on the task of (sub)group discovery.


Assuntos
Algoritmos , Análise por Conglomerados , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos
12.
Methods Mol Biol ; 2401: 161-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34902128

RESUMO

DNA microarrays are widely used to investigate gene expression. Even though the classical analysis of microarray data is based on the study of differentially expressed genes, it is well known that genes do not act individually. Network analysis can be applied to study association patterns of the genes in a biological system. Moreover, it finds wide application in differential coexpression analysis between different systems. Network based coexpression studies have for example been used in (complex) disease gene prioritization, disease subtyping, and patient stratification.In this chapter we provide an overview of the methods and tools used to create networks from microarray data and describe multiple methods on how to analyze a single network or a group of networks. The described methods range from topological metrics, functional group identification to data integration strategies, topological pathway analysis as well as graphical models.


Assuntos
Redes Reguladoras de Genes , Algoritmos , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
13.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962256

RESUMO

The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design. Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that may help to design new effective drugs.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19 , Células Gigantes , Pirimidinas/farmacologia , SARS-CoV-2/metabolismo , Estaurosporina/análogos & derivados , Células A549 , COVID-19/metabolismo , Biologia Computacional , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Células Gigantes/metabolismo , Células Gigantes/virologia , Humanos , Estaurosporina/farmacologia
14.
Bioinformatics ; 37(23): 4587-4588, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34498028

RESUMO

MOTIVATION: Network analysis is a powerful approach to investigate biological systems. It is often applied to study gene co-expression patterns derived from transcriptomics experiments. Even though co-expression analysis is widely used, there is still a lack of tools that are open and customizable on the basis of different network types and analysis scenarios (e.g. through function accessibility), but are also suitable for novice users by providing complete analysis pipelines. RESULTS: We developed VOLTA, a Python package suited for complex co-expression network analysis. VOLTA is designed to allow users direct access to the individual functions, while they are also provided with complete analysis pipelines. Moreover, VOLTA offers when possible multiple algorithms applicable to each analytical step (e.g. multiple community detection or clustering algorithms are provided), hence providing the user with the possibility to perform analysis tailored to their needs. This makes VOLTA highly suitable for experienced users who wish to build their own analysis pipelines for a wide range of networks as well as for novice users for which a 'plug and play' system is provided. AVAILABILITY AND IMPLEMENTATION: The package and used data are available at GitHub: https://github.com/fhaive/VOLTA and 10.5281/zenodo.5171719. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software
15.
Brief Bioinform ; 22(2): 1430-1441, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33569598

RESUMO

The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 induced host response. Biomedical data can help to investigate new aspects of the COVID-19 pathogenesis, but source heterogeneity represents a major drawback and limitation. In this work, we applied data integration methods to develop a Unified Knowledge Space (UKS) and used it to identify a new set of genes associated with SARS-CoV-2 host response, both in vitro and in vivo. Functional analysis of these genes reveals possible long-term systemic effects of the infection, such as vascular remodelling and fibrosis. Finally, we identified a set of potentially relevant drugs targeting proteins involved in multiple steps of the host response to the virus.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/genética , COVID-19/fisiopatologia , COVID-19/virologia , Genes Virais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA